Table 2: Notes on Mars Local Link Frequencies Recommended in Table 1 ## Table 2: Notes on The Mars Local Link Frequencies Recommended in Table 1 October 11, 2002 General Comments: - 1. All present and planned future missions to Mars use X-Band S-to-E and E-to-S links. - 2. A few missions also carry S-Band S-to-E or E-to-S links. The S-Band uplink is restricted by IMT2000. - 3. For all frequencies on this table, technology or equipmrnt is available in the industry. - 4. Saturation or jamming refers to strong interfering signal overwhelming the receiver operating in the same band or adjacent band. For missions at Mars satuation happens only on the same vehicle, not likely between vehicles because of the large distance between them. - 5. Cross interference refers to interference from one vehicle to another. For Mars missions, such interference is not likely to occur in the adjacent band. | | Data Rate
Performance | Accurate
Antenna
Pointing for
Performance | Mass and
Volume | Possible Equipment
Sharing with Deep Space
Space-Earth Links | Self-Interference with
Deep Space Space-Earth
Links | Cross Interference with
Deep Space Space-Earth
Links | Testing with Signals
Transmitted from an
Earth Station | Comments | |---------------------------------|----------------------------|--|--------------------|---|---|--|--|---| | 1.0 Space-to-Earth
(S-to-E) | | | | | | | | Per ITU-R RR | | 2.0 Earth-to-Space (E-to-
S) | | | | | | | | Per ITU-R RR | | 3.0 Orbit-to-Surface (Command) | | | | | | | | | | 3.1 435-450 MHz | Best at low rate, with LGA | Not required with LGA | large | none | none | none | Only on non-
interfering basis (NIB) | For low rate links | | 3.2 2025-2110 MHz | High rate, with
MGA/HGA | Required with
small
beamwidth (A) | small | If the lander carries an S-Band E-S receiver (Note: Deep space E-to-S is restricted by IMT2000) it is possible to modify the receiver to operate at extended frequencies. | If the orbiter carries S-Band E-S, the S-Band local link transmitter could saturate the S-Band E-S receiver unless there is adequate isolation. | none | Coordination is easier, as the band is allocated to SRS E-S, near Earth, where similar transmissions operate, although at lower power. | | | 3.3 7190-7235 MHz | Higher rate, with | Required with smaller beamwidth (1/4 A) | smaller | Possible to modify the X-Band E-to-S receiver to operate at extended frequencies. | The orbiter X-Band local link transmitter could saturate an orbiter X-Band E-S receiver unless there is adequate isolation. | none | High power
transmission in urban
area is restricted to
protect fixed and
mobile services. A
lesser problem in
rural areas. | For high rate
links. Can share X
Band equipment.
Must avoid self-
interference to the
X-Band E-to-S link | Table 2: Notes on Mars Local Link Frequencies Recommended in Table 1 | 3.4 14.5-15.35 GHz | Even higher rate
than X-Band,
with HGA | Required with
even smaller
angle (1/8 A) | even smaller
than X-Band | none | none | none | NIB | For high rate links | |-------------------------------------|--|--|-----------------------------|---|---|---|--|---| | 4.0 Surface-to-Orbit
(Telemetry) | | | | | | | | | | 4.1 390-405 MHz | see 3.1 | see 3.1 | see 3.1 | none | none | none | NIB | For low rate links | | 4.2 2200-2290 MHz | see 3.2 | see 3.2 | see 3.2 | If the lander carriers S-Band S-E transmitter (2290-2300 MHz), it is possible to modify the transmitter to operate at extended frequencies. | An orbiter S-Band S-to-E transmitter could saturate the orbiter local link receiver unless there is adequate isolation. | none | NIB | For high rate
links. Not as good
as 4.4 which
allows X-Band
equipment
sharing. | | 4.3 2290-2300 MHz | see 3.2 | see 3.2 | see 3.2 | If the lander carries S-
Band S-to-E transmitter,
the local link can share
the transmitter without
modification. | An orbiter S-Band S-E link transmitter will saturate the orbiter S-Band local link receiver. | An orbiter with S-Band S-
to-E link could interfere
with the local link receiver
if the latter is in its
antenna beam. | NIB | For high rate
links. Not as good
as 4.4 which
allows X-Band
equipment
sharing. | | 4.4 8400-8450 MHz | see 3.3 | see 3.3 | see 3.3 | Can share without modification a lander X-Band S-to-E transmitter. | An orbiter X-Band S-E link transmitter will saturate the orbiter X-Band local link receiver. | An orbiter with X-Band S-
to-E link could interfere
with another orbiter
receiving local X-Band
link if the latter is near or
in its antenna beam. | NIB | For high rate
links. Must avoid
cross-link
interference from
S-E links. | | 4.5 8450-8500 MHz | see 3.3 | see 3.3 | see 3.3 | Possible to share a lander X-Band S-to-E transmitter modifed to operate at extended frequencies. | Orbiter X-Band S-to-E r transmitter could saturate the orbiter local link receiver unless there is adequate isolation. | none | NIB | For high rate links | | 4.6 16.6-17.1 GHz | see 3.4 | see 3.4 | see 3.4 | none | none | none | Already allocated to
SRS, deep space, E-
to-S, secondary | For higher rate links | | 5.0 Surface-to-Surface | | | | | | | | | | 5.1 435-450 MHz and
390-405 MHz | see 3.1 | see 3.1 | see 3.1 | none | none | none | NIB | For low rate links | Table 2: Notes on Mars Local Link Frequencies Recommended in Table 1 | 5.2 2025-2110 MHz and
2200-2290 MHz | Low rate with
LGA. Higher
rate possible
with MGA. | LGA does not require pointing. MGA does. | see 3.2 | If lander carries S-Band space-Earth equipment, it is possible to modify it to operate at extended frequencies. | If the lander uses S-Band for space-Earth links, there will be self-jamming between the space-Earth and the local links unless there is adequate isolation. | none | Testing in the 2025-
2110 MHz band can
be coordinated, as it
is in SRS E-S band.
Testing in the 2290-
2300 MHz band is on
NIB. | For higher rate link with line of sight. | |--|--|--|---------|---|---|--|--|---| | 5.3 2110-2120 MHz and
2290-2300 MHz | see 5.2 | see 5.2 | see 3.2 | If a lander carries an S-
Band space-Earth
transmitter or receiver, it
can be used for local link. | If the lander uses S-Band space-Earth links, there will be self-jamming between the space-Earth and the local links. | A third vehicle using S-Band space-Earth links may interfere with the local link receiver if it is near the local link receiver, or there is not enough antenna discrimination between the Earth link transmitter and the local link receiver. | The 2110-2120 MHz band is already allocated to SRS, deep space, E-to-S. Testing the 2290-2300 MHz is on NIB. | For higher rate
link with line of
sight. | | 6.0 Orbit-to-Orbit | | | | | | | | | | 6.0 Orbit-to-Orbit | | | | | | | | | | 6.1 435-450 MHz and
390-405 MHz | see 3.1 | see 3.1 | see 3.1 | none | none | none | NIB | For low rate links | | 6.2 2025-2110 MHz and
2200-2290 MHz | see 3.2 | see 3.2 | see 3.2 | If an orbiter uses S-Band space-Earth link, it is possible to modify space-Earth link equipment to operate at extended frequencies. | If an orbiter uses S-Band space-Earth links, there will be self-jamming between the space-Earth and the local links unless there is adequate isolation. | none | Testing in the 2025-
2110 MHz band can
be coordinated, as it
is in SRS E-S band.
Testing in the 2290-
2300 MHz band is on
NIB. | For high rate links. Less likely to share equipment. | | 6.3 2110-2120 MHz and
2290-2300 MHz | see 3.2 | see 3.2 | see 3.2 | If orbiter carries an S-
Band space-Earth link,
the local link can share
the same equipment. | If one vehicle uses S-Band space-Earth links, there will be self-jamming between the space-Earth and the local links on the vehicle. | see 5.3 | The 2110-2120 MHz
band is already
allocated to SRS,
deep space, E-to-S.
Testing the 2290-
2300 MHz is on NIB. | For high rate
links. Can not
share equipment
with X-Band S-E
links. | Table 2: Notes on Mars Local Link Frequencies Recommended in Table 1 | 6.4 7190-7235 MHz and
8450-8500 MHz | see 3.3 | see 3.3 | see 3.3 | Possible to modify the X-Band space-Earth link equipment to operate in the extended frequency range. | The X-Band transmitter could saturate the X-Band receiver on the same vehicle unless there is adequate isolation. | none | Testing in the 7190-7235 MHz band can be coordinated, as it is in SRS band. Testing in the 8450-8500 MHz band is on NIB. | For high rate
Ilinks. Possible to
share equipment
with X-Band S-E
link. | |--|-----------------------------|---|---------|--|---|--|--|---| | 7.0 Mars Approach
Navigation and
Atmosphere Radio
Science | | | | | | | | | | 7.1 8400-8450 MHz | Radio metric
measurement | Accurate
pointing as
existing on
spacecraft for
Earth link. | see 3.3 | Sharing equipment with the X-Band S-to-E transmitter | , , | Cross Interference will not occure with approach navigation. It may happen with occultation radio science when receiver is in the beam of another orbiter transmitting the S-E link. | | |